Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Med Chem ; 66(23): 15728-15749, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967462

RESUMO

Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Br J Cancer ; 129(10): 1658-1666, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717120

RESUMO

BACKGROUND: A rapid, low-cost blood test that can be applied to reliably detect multiple different cancer types would be transformational. METHODS: In this large-scale discovery study (n = 2092 patients) we applied the Dxcover® Cancer Liquid Biopsy to examine eight different cancers. The test uses Fourier transform infrared (FTIR) spectroscopy and machine-learning algorithms to detect cancer. RESULTS: Area under the receiver operating characteristic curve (ROC) values were calculated for eight cancer types versus symptomatic non-cancer controls: brain (0.90), breast (0.76), colorectal (0.91), kidney (0.91), lung (0.91), ovarian (0.86), pancreatic (0.84) and prostate (0.86). We assessed the test performance when all eight cancer types were pooled to classify 'any cancer' against non-cancer patients. The cancer versus asymptomatic non-cancer classification detected 64% of Stage I cancers when specificity was 99% (overall sensitivity 57%). When tuned for higher sensitivity, this model identified 99% of Stage I cancers (with specificity 59%). CONCLUSIONS: This spectroscopic blood test can effectively detect early-stage disease and can be fine-tuned to maximise either sensitivity or specificity depending on the requirements from different healthcare systems and cancer diagnostic pathways. This low-cost strategy could facilitate the requisite earlier diagnosis, when cancer treatment can be more effective, or less toxic. STATEMENT OF TRANSLATIONAL RELEVANCE: The earlier diagnosis of cancer is of paramount importance to improve patient survival. Current liquid biopsies are mainly focused on single tumour-derived biomarkers, which limits test sensitivity, especially for early-stage cancers that do not shed enough genetic material. This pan-omic liquid biopsy analyses the full complement of tumour and immune-derived markers present within blood derivatives and could facilitate the earlier detection of multiple cancer types. There is a low barrier to integrating this blood test into existing diagnostic pathways since the technology is rapid, simple to use, only minute sample volumes are required, and sample preparation is minimal. In addition, the spectroscopic liquid biopsy described in this study has the potential to be combined with other orthogonal tests, such as cell-free DNA, which could provide an efficient route to diagnosis. Cancer treatment can be more effective when given earlier, and this low-cost strategy has the potential to improve patient prognosis.


Assuntos
Neoplasias da Próstata , Masculino , Feminino , Humanos , Neoplasias da Próstata/patologia , Curva ROC , Próstata/patologia , Biomarcadores Tumorais/genética , Análise Espectral , Biópsia Líquida
3.
J Exp Clin Cancer Res ; 42(1): 207, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37580713

RESUMO

The advances in cancer research achieved in the last 50 years have been remarkable and have provided a deeper knowledge of this disease in many of its conceptual and biochemical aspects. From viewing a tumor as a 'simple' aggregate of mutant cells and focusing on detecting key cell changes leading to the tumorigenesis, the understanding of cancer has broadened to consider it as a complex organ interacting with its close and far surroundings through tumor and non-tumor cells, metabolic mechanisms, and immune processes. Metabolism and the immune system have been linked to tumorigenesis and malignancy progression along with cancer-specific genetic mutations. However, most technologies developed to overcome the barriers to earlier detection are focused solely on genetic information. The concept of cancer as a complex organ has led to research on other analytical techniques, with the quest of finding a more sensitive and cost-effective comprehensive approach. Furthermore, artificial intelligence has gained broader consensus in the oncology community as a powerful tool with the potential to revolutionize cancer diagnosis for physicians. We herein explore the relevance of the concept of cancer as a complex organ interacting with the bodily surroundings, and focus on promising emerging technologies seeking to diagnose cancer earlier, such as liquid biopsies. We highlight the importance of a comprehensive approach to encompass all the tumor and non-tumor derived information salient to earlier cancer detection.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Biópsia Líquida/métodos , Oncologia , Carcinogênese , Biomarcadores Tumorais/metabolismo
4.
Analyst ; 148(16): 3860-3869, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37435822

RESUMO

Over recent years, deep learning (DL) has become more widely used within the field of cancer diagnostics. However, DL often requires large training datasets to prevent overfitting, which can be difficult and expensive to acquire. Data augmentation is a method that can be used to generate new data points to train DL models. In this study, we use attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectra of patient dried serum samples and compare non-generative data augmentation methods to Wasserstein generative adversarial networks (WGANs) in their ability to improve the performance of a convolutional neural network (CNN) to differentiate between pancreatic cancer and non-cancer samples in a total cohort of 625 patients. The results show that WGAN augmented spectra improve CNN performance more than non-generative augmented spectra. When compared with a model that utilised no augmented spectra, adding WGAN augmented spectra to a CNN with the same architecture and same parameters, increased the area under the receiver operating characteristic curve (AUC) from 0.661 to 0.757, presenting a 15% increase in diagnostic performance. In a separate test on a colorectal cancer dataset, data augmentation using a WGAN led to an increase in AUC from 0.905 to 0.955. This demonstrates the impact data augmentation can have on DL performance for cancer diagnosis when the amount of real data available for model training is limited.


Assuntos
Neoplasias Pancreáticas , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias Pancreáticas/diagnóstico , Luz , Biópsia Líquida , Redes Neurais de Computação
5.
Analyst ; 148(8): 1770-1776, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36967685

RESUMO

Attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy alongside machine learning (ML) techniques is an emerging approach for the early detection of brain cancer in clinical practice. A crucial step in the acquisition of an IR spectrum is the transformation of the time domain signal from the biological sample to a frequency domain spectrum via a discrete Fourier transform. Further pre-processing of the spectrum is typically applied to reduce non-biological sample variance, and thus to improve subsequent analysis. However, the Fourier transformation is often assumed to be essential even though modelling of time domain data is common in other fields. We apply an inverse Fourier transform to frequency domain data to map these to the time domain. We use the transformed data to develop deep learning models utilising Recurrent Neural Networks (RNNs) to differentiate between brain cancer and control in a cohort of 1438 patients. The best performing model achieves a mean (cross-validated score) area under the receiver operating characteristic (ROC) curve (AUC) of 0.97 with sensitivity of 0.91 and specificity of 0.91. This is better than the optimal model trained on frequency domain data which achieves an AUC of 0.93 with sensitivity of 0.85 and specificity of 0.85. A dataset comprising 385 patient samples which were prospectively collected in the clinic is used to test a model defined with the best performing configuration and fit to the time domain. Its classification accuracy is found to be comparable to the gold-standard for this dataset demonstrating that RNNs can accurately classify disease states using spectroscopic data represented in the time domain.


Assuntos
Neoplasias Encefálicas , Redes Neurais de Computação , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Curva ROC , Neoplasias Encefálicas/diagnóstico
6.
J Chem Inf Model ; 63(4): 1099-1113, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36758178

RESUMO

Accurate methods to predict solubility from molecular structure are highly sought after in the chemical sciences. To assess the state of the art, the American Chemical Society organized a "Second Solubility Challenge" in 2019, in which competitors were invited to submit blinded predictions of the solubilities of 132 drug-like molecules. In the first part of this article, we describe the development of two models that were submitted to the Blind Challenge in 2019 but which have not previously been reported. These models were based on computationally inexpensive molecular descriptors and traditional machine learning algorithms and were trained on a relatively small data set of 300 molecules. In the second part of the article, to test the hypothesis that predictions would improve with more advanced algorithms and higher volumes of training data, we compare these original predictions with those made after the deadline using deep learning models trained on larger solubility data sets consisting of 2999 and 5697 molecules. The results show that there are several algorithms that are able to obtain near state-of-the-art performance on the solubility challenge data sets, with the best model, a graph convolutional neural network, resulting in an RMSE of 0.86 log units. Critical analysis of the models reveals systematic differences between the performance of models using certain feature sets and training data sets. The results suggest that careful selection of high quality training data from relevant regions of chemical space is critical for prediction accuracy but that other methodological issues remain problematic for machine learning solubility models, such as the difficulty in modeling complex chemical spaces from sparse training data sets.


Assuntos
Aprendizado Profundo , Solubilidade , Redes Neurais de Computação , Aprendizado de Máquina , Algoritmos
7.
J Transl Med ; 21(1): 118, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774504

RESUMO

Cancer is a worldwide pandemic. The burden it imposes grows steadily on a global scale causing emotional, physical, and financial strains on individuals, families, and health care systems. Despite being the second leading cause of death worldwide, many cancers do not have screening programs and many people with a high risk of developing cancer fail to follow the advised medical screening regime due to the nature of the available screening tests and other challenges with compliance. Moreover, many liquid biopsy strategies being developed for early detection of cancer lack the sensitivity required to detect early-stage cancers. Early detection is key for improved quality of life, survival, and to reduce the financial burden of cancer treatments which are greater at later stage detection. This review examines the current liquid biopsy market, focusing in particular on the strengths and drawbacks of techniques in achieving early cancer detection. We explore the clinical utility of liquid biopsy technologies for the earlier detection of solid cancers, with a focus on how a combination of various spectroscopic and -omic methodologies may pave the way for more efficient cancer diagnostics.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Humanos , Detecção Precoce de Câncer/métodos , Qualidade de Vida , Neoplasias/diagnóstico , Neoplasias/patologia , Biópsia Líquida/métodos , Previsões
8.
Phys Chem Chem Phys ; 25(9): 6944-6954, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36806875

RESUMO

Simultaneous calculation of entropies, enthalpies and free energies has been a long-standing challenge in computational chemistry, partly because of the difficulty in obtaining estimates of all three properties from a single consistent simulation methodology. This has been particularly true for methods from the Integral Equation Theory of Molecular Liquids such as the Reference Interaction Site Model which have traditionally given large errors in solvation thermodynamics. Recently, we presented pyRISM-CNN, a combination of the 1 Dimensional Reference Interaction Site Model (1D-RISM) solver, pyRISM, with a deep learning based free energy functional, as a method of predicting solvation free energy (SFE). With this approach, a 40-fold improvement in prediction accuracy was delivered for a multi-solvent, multi-temperature dataset when compared to the standard 1D-RISM theory [Fowles et al., Digital Discovery, 2023, 2, 177-188]. Here, we report three further developments to the pyRISM-CNN methodology. Firstly, solvation free energies have been introduced for organic molecular ions in methanol or water solvent systems at 298 K, with errors below 4 kcal mol-1 obtained without the need for corrections or additional descriptors. Secondly, the number of solvents in the training data has been expanded from carbon tetrachloride, water and chloroform to now also include methanol. For neutral solutes, prediction errors nearing or below 1 kcal mol-1 are obtained for each organic solvent system at 298 K and water solvent systems at 273-373 K. Lastly, pyRISM-CNN was successfully applied to the simultaneous prediction of solvation enthalpy, entropy and free energy through a multi-task learning approach, with errors of 1.04, 0.98 and 0.47 kcal mol-1, respectively, for water solvent systems at 298 K.

9.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804820

RESUMO

Pancreatic cancer claims over 460,000 victims per year. The carbohydrate antigen (CA) 19-9 test is the blood test used for pancreatic cancer's detection; however, its levels can be raised in symptomatic patients with other non-malignant diseases, or with other tumors in the surrounding area. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has demonstrated exceptional potential in cancer diagnostics, and its clinical implementation could represent a significant step towards early detection. This proof-of-concept study, investigating the use of ATR-FTIR spectroscopy on dried blood serum, focused on the discrimination of both cancer versus healthy control samples, and cancer versus symptomatic non-malignant control samples, as a novel liquid biopsy approach for pancreatic cancer diagnosis. Machine learning algorithms were applied, achieving results of up to 92% sensitivity and 88% specificity when discriminating between cancers (n = 100) and healthy controls (n = 100). An area under the curve (AUC) of 0.95 was obtained through receiver operating characteristic (ROC) analysis. Balanced sensitivity and specificity over 75%, with an AUC of 0.83, were achieved with cancers (n = 35) versus symptomatic controls (n = 35). Herein, we present these results as demonstration that our liquid biopsy approach could become a simple, minimally invasive, and reliable diagnostic test for pancreatic cancer detection.

10.
Neurooncol Adv ; 4(1): vdac024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316978

RESUMO

Background: Diagnostic delays impact the quality of life and survival of patients with brain tumors. Earlier and expeditious diagnoses in these patients are crucial to reduce the morbidities and mortalities associated with brain tumors. A simple, rapid blood test that can be administered easily in a primary care setting to efficiently identify symptomatic patients who are most likely to have a brain tumor would enable quicker referral to brain imaging for those who need it most. Methods: Blood serum samples from 603 patients were prospectively collected and analyzed. Patients either had non-specific symptoms that could be indicative of a brain tumor on presentation to the Emergency Department, or a new brain tumor diagnosis and referral to the neurosurgical unit, NHS Lothian, Scotland. Patient blood serum samples were analyzed using the Dxcover® Brain Cancer liquid biopsy. This technology utilizes infrared spectroscopy combined with a diagnostic algorithm to predict the presence of intracranial disease. Results: Our liquid biopsy approach reported an area under the receiver operating characteristic curve of 0.8. The sensitivity-tuned model achieves a 96% sensitivity with 45% specificity (NPV 99.3%) and identified 100% of glioblastoma multiforme patients. When tuned for a higher specificity, the model yields a sensitivity of 47% with 90% specificity (PPV 28.4%). Conclusions: This simple, non-invasive blood test facilitates the triage and radiographic diagnosis of brain tumor patients while providing reassurance to healthy patients. Minimizing time to diagnosis would facilitate the identification of brain tumor patients at an earlier stage, enabling more effective, less morbid surgical and adjuvant care.

11.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34359751

RESUMO

BACKGROUND: To support the early detection and diagnosis of brain tumours we have developed a rapid, cost-effective and easy to use spectroscopic liquid biopsy based on the absorbance of infrared radiation. We have previously reported highly sensitive results of our approach which can discriminate patients with a recent brain tumour diagnosis and asymptomatic controls. Other liquid biopsy approaches (e.g., based on tumour genetic material) report a lower classification accuracy for early-stage tumours. In this manuscript we present an investigation into the link between brain tumour volume and liquid biopsy test performance. METHODS: In a cohort of 177 patients (90 patients with high-grade glioma (glioblastoma (GBM) or anaplastic astrocytoma), or low-grade glioma (astrocytoma, oligoastrocytoma and oligodendroglioma)) tumour volumes were calculated from magnetic resonance imaging (MRI) investigations and patients were split into two groups depending on MRI parameters (T1 with contrast enhancement or T2/FLAIR (fluid-attenuated inversion recovery)). Using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy coupled with supervised learning methods and machine learning algorithms, 90 tumour patients were stratified against 87 control patients who displayed no symptomatic indications of cancer, and were classified as either glioma or non-glioma. RESULTS: Sensitivities, specificities and balanced accuracies were all greater than 88%, the area under the curve (AUC) was 0.98, and cancer patients with tumour volumes as small as 0.2 cm3 were correctly identified. CONCLUSIONS: Our spectroscopic liquid biopsy approach can identify gliomas that are both small and low-grade showing great promise for deployment of this technique for early detection and diagnosis.

12.
Brain Commun ; 3(2): fcab056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997782

RESUMO

Early diagnosis of brain tumours is challenging and a major unmet need. Patients with brain tumours most often present with non-specific symptoms more commonly associated with less serious diagnoses, making it difficult to determine which patients to prioritize for brain imaging. Delays in diagnosis affect timely access to treatment, with potential impacts on quality of life and survival. A test to help identify which patients with non-specific symptoms are most likely to have a brain tumour at an earlier stage would dramatically impact on patients by prioritizing demand on diagnostic imaging facilities. This clinical feasibility study of brain tumour early diagnosis was aimed at determining the accuracy of our novel spectroscopic liquid biopsy test for the triage of patients with non-specific symptoms that might be indicative of a brain tumour, for brain imaging. Patients with a suspected brain tumour based on assessment of their symptoms in primary care can be referred for open access CT scanning. Blood samples were prospectively obtained from 385 of such patients, or patients with a new brain tumour diagnosis. Samples were analysed using our spectroscopic liquid biopsy test to predict presence of disease, blinded to the brain imaging findings. The results were compared to the patient's index brain imaging delivered as per standard care. Our test predicted the presence of glioblastoma, the most common and aggressive brain tumour, with 91% sensitivity, and all brain tumours with 81% sensitivity, and 80% specificity. Negative predictive value was 95% and positive predictive value 45%. The reported levels of diagnostic accuracy presented here have the potential to improve current symptom-based referral guidelines, and streamline assessment and diagnosis of symptomatic patients with a suspected brain tumour.

13.
J Chem Theory Comput ; 17(6): 3700-3709, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33988381

RESUMO

We demonstrate that physics-based calculations of intrinsic aqueous solubility can rival cheminformatics-based machine learning predictions. A proof-of-concept was developed for a physics-based approach via a sublimation thermodynamic cycle, building upon previous work that relied upon several thermodynamic approximations, notably the 2RT approximation, and limited conformational sampling. Here, we apply improvements to our sublimation free-energy model with the use of crystal phonon mode calculations to capture the contributions of the vibrational modes of the crystal. Including these improvements with lattice energies computed using the model-potential-based Ψmol method leads to accurate estimates of sublimation free energy. Combining these with hydration free energies obtained from either molecular dynamics free-energy perturbation simulations or density functional theory calculations, solubilities comparable to both experiment and informatics predictions are obtained. The application to coronene, succinic acid, and the pharmaceutical desloratadine shows how the methods must be adapted for the adoption of different conformations in different phases. The approach has the flexibility to extend to applications that cannot be covered by informatics methods.


Assuntos
Preparações Farmacêuticas/química , Teoria da Densidade Funcional , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Solubilidade , Termodinâmica , Água/química
14.
Int J Technol Assess Health Care ; 37: e41, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622443

RESUMO

OBJECTIVES: An early economic evaluation to inform the translation into clinical practice of a spectroscopic liquid biopsy for the detection of brain cancer. Two specific aims are (1) to update an existing economic model with results from a prospective study of diagnostic accuracy and (2) to explore the potential of brain tumor-type predictions to affect patient outcomes and healthcare costs. METHODS: A cost-effectiveness analysis from a UK NHS perspective of the use of spectroscopic liquid biopsy in primary and secondary care settings, as well as a cost-consequence analysis of the addition of tumor-type predictions was conducted. Decision tree models were constructed to represent simplified diagnostic pathways. Test diagnostic accuracy parameters were based on a prospective validation study. Four price points (GBP 50-200, EUR 57-228) for the test were considered. RESULTS: In both settings, the use of liquid biopsy produced QALY gains. In primary care, at test costs below GBP 100 (EUR 114), testing was cost saving. At GBP 100 (EUR 114) per test, the ICER was GBP 13,279 (EUR 15,145), whereas at GBP 200 (EUR 228), the ICER was GBP 78,300 (EUR 89,301). In secondary care, the ICER ranged from GBP 11,360 (EUR 12,956) to GBP 43,870 (EUR 50,034) across the range of test costs. CONCLUSIONS: The results demonstrate the potential for the technology to be cost-effective in both primary and secondary care settings. Additional studies of test use in routine primary care practice are needed to resolve the remaining issues of uncertainty-prevalence in this patient population and referral behavior.


Assuntos
Neoplasias Encefálicas , Modelos Econômicos , Neoplasias Encefálicas/diagnóstico , Análise Custo-Benefício , Humanos , Biópsia Líquida , Estudos Prospectivos
15.
Cancers (Basel) ; 12(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302429

RESUMO

Mutations in the isocitrate dehydrogenase 1 (IDH1) gene are found in a high proportion of diffuse gliomas. The presence of the IDH1 mutation is a valuable diagnostic, prognostic and predictive biomarker for the management of patients with glial tumours. Techniques involving vibrational spectroscopy, e.g., Fourier transform infrared (FTIR) spectroscopy, have previously demonstrated analytical capabilities for cancer detection, and have the potential to contribute to diagnostics. The implementation of FTIR microspectroscopy during surgical biopsy could present a fast, label-free method for molecular genetic classification. For example, the rapid determination of IDH1 status in a patient with a glioma diagnosis could inform intra-operative decision-making between alternative surgical strategies. In this study, we utilized synchrotron-based FTIR microanalysis to probe tissue microarray sections from 79 glioma patients, and distinguished the positive class (IDH1-mutated) from the IDH1-wildtype glioma, with a sensitivity and specificity of 82.4% and 83.4%, respectively. We also examined the ability of attenuated total reflection (ATR)-FTIR spectroscopy in detecting the biomolecular events and global epigenetic and metabolic changes associated with mutations in the IDH1 enzyme, in blood serum samples collected from an additional 72 brain tumour patients. Centrifugal filtration enhanced the diagnostic ability of the classification models, with balanced accuracies up to ~69%. Identification of the molecular status from blood serum prior to biopsy could further direct some patients to alternative treatment strategies.

16.
Cancers (Basel) ; 12(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605100

RESUMO

Patients living with brain tumours have the highest average years of life lost of any cancer, ultimately reducing average life expectancy by 20 years. Diagnosis depends on brain imaging and most often confirmatory tissue biopsy for histology. The majority of patients experience non-specific symptoms, such as headache, and may be reviewed in primary care on multiple occasions before diagnosis is made. Sixty-two per cent of patients are diagnosed on brain imaging performed when they deteriorate and present to the emergency department. Histological diagnosis from invasive surgical biopsy is necessary prior to definitive treatment, because imaging techniques alone have difficulty in distinguishing between several types of brain cancer. However, surgery itself does not necessarily control tumour growth, and risks morbidity for the patient. Due to their similar features on brain scans, glioblastoma, primary central nervous system lymphoma and brain metastases have been known to cause radiological confusion. Non-invasive tests that support stratification of tumour subtype would enhance early personalisation of treatment selection and reduce the delay and risks associated with surgery for many patients. Techniques involving vibrational spectroscopy, such as attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, have previously demonstrated analytical capabilities for cancer diagnostics. In this study, infrared spectra from 641 blood serum samples obtained from brain cancer and control patients have been collected. Firstly, we highlight the capability of ATR-FTIR to distinguish between healthy controls and brain cancer at sensitivities and specificities above 90%, before defining subtle differences in protein secondary structures between patient groups through Amide I deconvolution. We successfully differentiate several types of brain lesions (glioblastoma, meningioma, primary central nervous system lymphoma and metastasis) with balanced accuracies >80%. A reliable blood serum test capable of stratifying brain tumours in secondary care could potentially avoid surgery and speed up the time to definitive therapy, which would be of great value for both neurologists and patients.

17.
J Biophotonics ; 13(9): e202000118, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32506784

RESUMO

In recent years, the diagnosis of brain tumors has been investigated with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy on dried human serum samples to eliminate spectral interferences of the water component, with promising results. This research evaluates ATR-FTIR on both liquid and air-dried samples to investigate "digital drying" as an alternative approach for the analysis of spectra obtained from liquid samples. Digital drying approaches, consisting of water subtraction and least-squares method, have demonstrated a greater random forest (RF) classification performance than the air-dried spectra approach when discriminating cancer vs control samples, reaching sensitivity values higher than 93.0% and specificity values higher than 83.0%. Moreover, quantum cascade laser infrared (QCL-IR) based spectroscopic imaging is utilized on liquid samples to assess the implications of a deep-penetration light source on disease classification. The RF classification of QCL-IR data has provided sensitivity and specificity amounting to 85.1% and 75.3% respectively.


Assuntos
Água , Humanos , Análise dos Mínimos Quadrados , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Chem Inf Model ; 60(3): 1528-1539, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31910338

RESUMO

Identification of correct protein-ligand binding poses is important in structure-based drug design and crucial for the evaluation of protein-ligand binding affinity. Protein-ligand coordinates are commonly obtained from crystallography experiments that provide a static model of an ensemble of conformations. Binding pose metadynamics (BPMD) is an enhanced sampling method that allows for an efficient assessment of ligand stability in solution. Ligand poses that are unstable under the bias of the metadynamics simulation are expected to be infrequently occupied in the energy landscape, thus making minimal contributions to the binding affinity. Here, the robustness of the method is studied using crystal structures with ligands known to be incorrectly modeled, as well as 63 structurally diverse crystal structures with ligand fit to electron density from the Twilight database. Results show that BPMD can successfully differentiate compounds whose binding pose is not supported by the electron density from those with well-defined electron density.


Assuntos
Desenho de Fármacos , Proteínas , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
19.
Analyst ; 144(22): 6736-6750, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31612875

RESUMO

Over a third of brain tumour patients visit their general practitioner more than five times prior to diagnosis in the UK, leading to 62% of patients being diagnosed as emergency presentations. Unfortunately, symptoms are non-specific to brain tumours, and the majority of these patients complain of headaches on multiple occasions before being referred to a neurologist. As there are currently no methods in place for the early detection of brain cancer, the affected patients' average life expectancy is reduced by 20 years. These statistics indicate that the current pathway is ineffective, and there is a vast need for a rapid diagnostic test. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy is sensitive to the hallmarks of cancer, as it analyses the full range of macromolecular classes. The combination of serum spectroscopy and advanced data analysis has previously been shown to rapidly and objectively distinguish brain tumour severity. Recently, a novel high-throughput ATR accessory has been developed, which could be cost-effective to the National Health Service in the UK, and valuable for clinical translation. In this study, 765 blood serum samples have been collected from healthy controls and patients diagnosed with various types of brain cancer, contributing to one of the largest spectroscopic studies to date. Three robust machine learning techniques - random forest, partial least squares-discriminant analysis and support vector machine - have all provided promising results. The novel high-throughput technology has been validated by separating brain cancer and non-cancer with balanced accuracies of 90% which is comparable to the traditional fixed diamond crystal methodology. Furthermore, the differentiation of brain tumour type could be useful for neurologists, as some are difficult to distinguish through medical imaging alone. For example, the highly aggressive glioblastoma multiforme and primary cerebral lymphoma can appear similar on magnetic resonance imaging (MRI) scans, thus are often misdiagnosed. Here, we report the ability of infrared spectroscopy to distinguish between glioblastoma and lymphoma patients, at a sensitivity and specificity of 90.1% and 86.3%, respectively. A reliable serum diagnostic test could avoid the need for surgery and speed up time to definitive chemotherapy and radiotherapy.


Assuntos
Análise Química do Sangue/estatística & dados numéricos , Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Linfoma/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Adulto Jovem
20.
Nat Commun ; 10(1): 4501, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594931

RESUMO

Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this patient pathway. A blood test using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy for the detection of brain cancer, alongside machine learning technology, is advancing towards clinical translation. However, whilst the methodology is simple and does not require extensive sample preparation, the throughput of such an approach is limited. Here we describe the development of instrumentation for the analysis of serum that is able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%. Furthermore, preliminary data from the first prospective clinical validation study of its kind are presented, demonstrating how this innovative technology can triage patients and allow rapid access to imaging.


Assuntos
Análise Química do Sangue/métodos , Neoplasias Encefálicas/diagnóstico , Triagem/métodos , Adulto , Idoso , Biópsia , Análise Química do Sangue/economia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/patologia , Análise Custo-Benefício , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier/economia , Fatores de Tempo , Triagem/economia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...